Maya中如何使用三角形化(Triangulate)和四边形化(Quadrangulate)?

%e4%b8%89%e8%a7%92%e5%8c%96%e5%9b%9b%e8%be%b9%e5%bd%a2%e5%8c%96

今天我们来看下MAYA多边形建模中的三角形化和四边形化。同样的,我们在Mesh网格菜单下,就可以找到这个Triangulate:三角形化;Quadrangulate:四边形化

我们首先来看下这个:三角化命令。

例如我们在场景中创建一个多边形立方体,我们适当的给它增加一些细分段数。我们只要选择它,点击执行【三角化】命令,那么这个多边形立方体上的面,就会转化为三角面。

那么这里我们需要注意是,有的教程它会告诉你:这个命令是四边面转化为三角面,其实这个说法是不完全正确的。因为【三角化】命令,针对的是多边形上的面,跟你这个面本身有几条线是没有任何关系的。

我们撤销回去,我们以这个四边面为例。假设我们在这个四边面上加两条线,那么这个网格就变为一个五边面。

我们回到对象模式,我们再次执行【三角化】命令,我们可以看到:这个五边面也同样会被转化为三角面。

当然我们平时建模的时候,会尽量使用四边面减少使用三角面,而之所以不使用4条边以上的面,一方面是因为计算容易出错,另一方面是因为这种布线不是那么的美观。

然后我们再来看下这个:四边形化,它的作用就是:就是将多边形上的三角面转化为四边面。我们撤销回去,同样的我们以这个模型为例。我们先对其执行【三角化】,那么现在它就是一个三角面组成的模型,当我们再对其执行【四边形化】,那么它上面的三角面,就会全部变为四边面。

这个很简单,我们接着来看下【四边形化】的选项设置,那么这里有一个【角度阈值】,它默认的是30度。

这个阈值:是控制相邻的两个三角面合并的极限参数。而这个度数:指的是他们两者【面法线】所成的夹角。以这个默认的30度来说,它的意思就是:只要相邻的两个三角面的法线夹角在30度的阈值范围内,那么这两个相邻的三角面,就会合并为一个四边面。可能我这样说,还是很难理解,同样的我们以这个模型为例,我们撤销回到它三角面的形态,我们具体的来分析一下:它的原理是怎么样的。

既然是和【面法线】有关系,我们在Display显示菜单下,在多边形扩展菜单下,开启【面法线显示】。

那么这个绿色就是法线,我们可以看到每个三角面上都有一条法线,并且这个法线和我们的面是垂直的关系。

以这两个相邻的三角面为例,我们一看知道:它们是处于一个平面上的。所以面法线的夹角就为0度,而0度<30度,在角度阈值范围之内,所以这两个三角面,才被合并为一个四边面。

那么这里我们讲到的是:共面的两个三角面。现在我们进入面模式,我们适当的调节面的角度,让这两个三角面不在一个平面上。

那么现在我们可以看到:这两个面法线夹的角差不多也就是20度左右。假设我们把角度阈值设置为10,因为20度不在10度的阈值范围内。

所以,在执行【四边形化】命令的时候,这个两个三角面是不会被四边化的。

同时受影响的旁边这两个三角面,也同样不会被四边化。

我们撤销回去,假设我们再把阈值设置50,因为20度的法线夹角,刚好在50度的阈值范围之内。

所以,当我们再次执行【四边形化】命令的时候,这两个三角面就会被四边化。

这样一说,角度阈值应该就很好理解了。这里我们只要记住:法线夹角在阈值范围内,才会被四边形化,否则将保持原先的三角面。

至于下面的保持面组边界,保持硬边,保持纹理边界,世界空间坐标

这些都是附加勾选的一些功能属性:
保持面组边界(Keep face group border) :决定是否可以修改面集的边界。
保持硬边(Keep hard edges) :决定是否可以删除两个三角形之间的硬边。
保持纹理边界(Keep texture border) :决定是否可以修改纹理贴图的边界。
世界空间坐标(World space coordinates) :启用为默认的【世界空间】内的法线夹角,禁用为【局部空间】内的法线夹角。

好了,关于多边形的三角形化和四边形化命令就讲到这里!

Maya中如何使用平滑命令(Smooth)?

%e5%b9%b3%e6%bb%91%e5%91%bd%e4%bb%a4

如何使用平滑命令来对模型进行平滑处理?我们打开mesh网格菜单,那么这个Smooth就是平滑命令。

同时我们也可以在工具架上,多边形建模选项卡中,找到这个快捷命令图标。

首先我们要知道什么是平滑处理?平滑处理就是将一个比较粗糙的模型,说白了也就是面比较少的模型,通过增加细分面数的方式,让其面数增多,从而让其表面变得更加光滑。

例如我在场景中创建一个立方体,我们选择它,点击执行平滑命令,我们会看到:相比之前,它的面数增多了,更接近一个粗糙的球体。

我们多执行几次,我们会发现它的面数会变得越来越多,更接近一个光滑的球体表面,这个就是平滑处理的一个最直观的表现!

我们打开平滑选项设置,我们来看下设置下的这个【添加分段】的选项设置,我们刚才使用的就是:通过【指数】来细分。它的效果就是将网格上的面拓扑成为四边形。

那么这里,可能有的人会问什么是拓扑呢?拓扑就是在连续改变网格形状之后,还能保持物体本身的特性。那么,我们也可以直接把它看成是一种特殊的综合布线的方式。

第二个是:通过【线性】来细分,它和上面的【指数】细分不同的是:这种细分方式,会适当的产生一些三角面,而【指数】细分则只会产生四边面,不会产生三角面。

我们先把这个模型删除,我们重新创建两个多边形球体,我们适当的调节球体的角度。一个使用【指数】进行细分,一个使用【线性】的方式进行细分。

为了更好的观察,我可以开启线框着色显示。那么我们重点观察的就是:这两个球体顶部,多条线相交的地方。

我们对左边的球体执行【指数】细分。

对右边的球体执行【线性】细分。

我们先来观察这个【指数】细分的球体,我们可以看到原先三角形的部分,重新布线之后,三角面就变为了四边面。

然后我们再来观察这个【线性】细分的球体,我们可以看到:在正常细分的基础上,它会适当的产生一些三角面。

我们关闭选项,我们回到场景中,我们知道左边的这个球体是通过【指数】来细分的,那么当我们选择它的时候,我们可以在通道盒看到这个球体的输入节点,那么除了他默认的创建节点,还多了一个polySmoothFace多边形平滑面的这样一个节点。这个节点,就是我们对其执行【指数】细分所创建的。我们展开它,我们可以在这里Divisions分段数下重新调节它的分段数。同样的,这个值越大,模型就会更加光滑,更加精细;值越小,模型就会更加粗糙。

如果要快速调节分段数:我们只需要选择这个【分段数】标签,然后鼠标在场景中,按下中键拖动,就可以快速增加或者减少分段数。但是我们要注意,我们使用【线性】细分的这个模型,我们调节它的分段数,对它是没有任何效果的。

那么以上就是平滑命令的基本使用方法。至于下下面的平滑UV,保持边界等等,这些都是一些特殊情况下使用的选项设置,都是一些字面上的意思。只要掌握了基础的使用方法,这些都会变得非常容易。

好了,关于这个平滑命令就讲这么多。

Maya中如何使用多边形减少命令(Reduce)?

%e7%ae%80%e5%8c%96%e6%a8%a1%e5%9e%8b

今天我们我们来看下MAYA多边形建模中的减少命令。我们打开网格菜单,那么在这里就可以找到【Reduce】减少命令。

我们先不说它的作用,我们先观察命令前面的图标,我们就能很容易的知道:这个命令就是把网格从密集变为稀疏的一个过程。我们平时也把它叫做简化命令。

例如我们在场景中创建一个多边形球体,我们可以看到这个面还是比较密集的。我们选择它,点击执行减少命令。

那么我们可以非常容易的观察到:这个面突然就减少了一部分。这个就是简化命令默认值下的使用效果。

接下来我们打开它的选项设置来看一下:第一个设置Keep Original:就是保持原始的意思。说白了,也就是在执行【减少命令】的时候,保留这个原始的模型。那么刚才我们是没有勾选的,所以它是直接在原始模型上简化的。

我们撤销回去,我们先把这个【保持原始】勾选上,我们再来执行一次【减少命令】。

这次,我们可以看到:在简化之后,这个原始的模型就被保留下来了,这个就是保持原始的作用!非常简单!

下面的这个Reduction Method是减少网格的方法这么这里它提供三种方法:一种是默认的Percentage:百分比;一种是Vertex limit:顶点限制;还有最后的Triangle limit:三角形限制。

百分比下的这个值是通过设置百分比来减少多边形网格的数量。我们把这个简化的模型删除,同样的,我们以这个原始模型为例。这里为了看到简化后细节对比,我们可以启线框着色显示,这里的【保留原始】保持勾选就可以。

那么接下来,我们就来看下:这个减少百分比在50%和90%的时候,这个简化的效果分别是怎么样的?我们选择物体对象,将其百分比设置为50,点击应用,这个就是50%的简化效果。

我们将值再设置为90,点击应用,这个就是90%的简化效果。非常的直观,容易理解!

我们将这两个简化的模型删除,我们接着来看这个顶点限制下的值:这个是用来控制输出网格的顶点数量。也就是在简化后,整个多边形网格上允许出现的,顶点的数量。假设我们来个比较夸张的,我们要把多边形的顶点数量设置为5,点击应用。我们按下4键线框显示,可以看到简化之后,网格上的顶点数量变为了5。

如果我们觉得这样不好观察,我们可以在Display显示菜单下–>Heads up display–>poly count显示多边形计数。

那么在这里面我们可以准确的看到:点线面的个数,那么第一列是显示的是:场景中可见多边形的总计数。

而我们要看的是第二列:也就是我们当前选定的这个模型的计数。

我们可以看到:当前这个模型,它的顶点的数量就是5,非常的直观。

这里我们要注意一个问题:就是这个顶点数量的问题。我们都学过:几何体最少是有4个顶点组成的,所以这里的这个顶点数量,就算我们设置为4以下的值,它依旧只能简化为4个顶点的几何体。我们可以设置为一个1来看一下,我们选择模型,点击应用。我们可以看到:即便我们设置的是1个顶点,但是简化之后的模型,它的顶点数量就只能是4。

我们把这两个简化的模型删除,我们再来看下【三角形限制】下的这个值,它是用来设置输出网格的三角形数量。说白了也就是让多边形上的每个网格都变为三角形,这个值就是用来控制这个三角形网格的数量。

假设我们把它设置为10,意思也就是:让这个模型简化为10个三角形网格组成的模型,我们点击应用来看一下。我们可以看到简化后的模型,每个面都是三角形,并且在这个多边形计数里面,我们可以看到面的统计数量为10,说明我们的这个简化效果是没有任何问题的。

然后,我们再来看一下【形状】下的设置:这个Preserve quads:意思就是保留四边形。那么它的最大值是1,最小值为0,这个值越大,保留的四边形就越多;值越小,保留的四边形就越少。

这个Sharpness:是细节的意思,同样的,最大值为1,最小值为0,这个值越大,形状细节就会保留的更多。

至于下面的这个对称类型:只有在【保留四边形】的值小于1的时候才会激活使用。那么这里默认的是none,我们可以根据自己的需求选择自动对称或者平面对称。

下面的这个是对称容差:那么这个只有在开启自动或者平面对称才会被激活使用。对称容差也是0到1的范围,这个是对称平面的选择,这些我们都可以根据自己的需要去设置,没有什么难度。

然后这个Feature Preservation:是功能保留的意思。也就是我们在执行简化的过程中,我们可以设置对应的边界优先级。我们从上到下依次为:网格边界、UV边界、颜色边界、材质边界、硬边、还有这个折痕边。

最后,高级选项下的这个是:顶点索引映射,作用就是在原始网格和输出网格的顶点之间建立关系。这个我们再后面遇到的时候,再做具体的分析讲解。

好了,今关于多边形简化命令就讲到这里。

Maya中如何使用补洞命令(Fill Hole)?

%e8%a1%a5%e6%b4%9e%e5%91%bd%e4%bb%a4

今天我们我们来看下MAYA多边形建模中的补洞命令。我们打开网格菜单,那么在这里就可以找到【Fill Hole】补洞命令,它的作用:就是修补多边形的缺口。

例如,我们在场景中创建一个多边形立方体。我们在右侧的创建节点里面,适当的给它增加一些细分段数。

我们右键进入面模式,这里我们手动去删除一些面来作为待修补的缺口。

我们现在就用补洞命令来演示如何修补这样的缺口。假设我们要修补这个缺口,我们就右键选择进入线模式。我们只要选择这个缺口边缘上的一条线,点击执行【补洞命令】。

这样,这个缺口就会很容易的被修补上。

另外假如我们要同时修补多个缺口应该怎么做呢?如果像这样一个一个的去操作,就会非常的麻烦。我们可以尝试在选择一条线之后,按住Shift键加选其他缺口上的线,然后我们统一的执行补洞命令。

这样就可以实现同时修补多个缺口。

除此之外,假设我们要自动修补这个这个立方体上存在的缺口。我们只需要右键进入物体级别(对象模式),选择这个立方体,直接执行【补洞命令】。

那么这个立方体上的缺口就会被自动修补好,非常的简单。

那么我们在平时操作的时候,为了更加方便快捷,我们可以直接按住Shift键+鼠标右键,就可以快速调出【补洞命令】。

其实到这里,补洞命令就讲完了。但是,可能在实际操作的过程中,会遇到这个洞补不上的问题,其实多半都是因为我们布线上的一些问题,例如点重叠、面重叠等等。

我们撤销回去,同样的,我们以这个缺口为例我们选择周围的线,假设我们现在执行挤出命令,突然后悔了,终止了操作。那么这个时候,假设我们不细心,忘记了撤销操作。

当我们尝试选择线,执行【补洞命令】的时候,我们就会发现没有任何反应。

我们可以进入点模式,移动边缘上的点,就会很容易的发现问题。我们会看到:点的下面还压着一个点,这个线的下面还压着一条线。我们刚才误选的就是压在上面的这条线,而下面的这条线才是真正的边缘上的线。

我们可以尝试选择它,再执行一次补洞命令。

我们可以看到,这次是没有任何问题的。

那么遇到这样的情况,我们应该怎么处理这样的边呢?如果只是类似这样的失误,我们可以使用焊接点命令。我们撤销回去,进入点模式,Shift键分别框选这4个点,因为重叠的关系,其实我们选择的是8个点。

这个时候,我们按住Shift键,右键选择焊接点菜单,选择焊接点命令。

这样重合的点就会被焊接到一起,我们可以移动单个点来看下。我们可以看到:现在的这个点就没有任何问题了。

我们选择缺口上的线,再次执行补洞命令。我们可以看到,现在又可以正常的补洞了!

这个就是常见的补洞失败的原因和解决方法。当我们遇到类似的情况,一定要记得先检查自己的布线!确保点线面都没有问题。

好了,关于补洞命令的用法就讲到这里!

Maya中如何组合分离物体对象(Combine & Separate)?

%e7%bb%84%e5%90%88%e5%88%86%e7%a6%bb

今天我们一起来看一下在Maya多边形建模中网格菜单下的【Combine组合命令】以及【Separate分离命令】。那么单从字面的意思,我们就知道:它们两者是相对的,一个负责组合,一个负责分离。

首先我们来看这个:Combine组合命令,它的意思就是:将两个或者多个多边形对象组合到一个多边形对象中。

例如,我在场景中创建一个多边形球体、一个多边形立方体和一个多边形圆柱。这个时候,我们只要选择它们,点击执行组合命令,这三个物体对象就会组合到一个新的多边形对象中。

假如,我们想要把它拆开,我们只要选择它,然后执行【Separate分离命令】。

那么分离之后,就又可以选择单个的物体对象。

那么这里,我们需要注意:这个组合而成的新对象,和我们布尔运算并集得到的新对象,本质是不一样的。这个组合而成的对象就相当于是一个外壳装着这三个模型,我使用分离命令很容易就将它们拆开。

但是这个并集得到的新对象就相当于是直接焊接在一起了,变成了一个真正意义上的整体,无法使用这个分离命令来进行拆分。

我们先把这些模型删除,我们重新创建两个多边形。现在,我们选择这两个多边形对象,我们对其执行布尔并集运算,将它们拼合到一起。

这个时候,当我们尝试使用【分离命令】进行拆分的时候。,我们可以看到右下角就开始报错了,意思就是:这个对象只有一个,不能进行分离。

其实不单单是这样,我们细心观察可以发现:这个相交的部分发生了略微的变形,那么我们进入点模式,选择交界处的单个点,来移动来看一下。我们可以看到交界处的点是粘合到一起的,这也就是它和组合对象的一个本质上的区别。

好了,回到正题。现在,我们继续来看一下,这个组合命令后面的选项设置,我们将其恢复默认值,那么这里第一个是:合并UV集设置,第二个是:枢轴位置设置。

那么在【合并UV集设置】里:默认的是按名称合并,当然,我们也可以根据实际的情况:选择不合并,或者是按UV链合并,合并蒙皮

至于这个Combine skinning合并蒙皮,那么勾选则保留它之前的权重,不勾选的话自然就是不保留。

至于下面的这个枢轴位置设置,也很简单。我们把这个模型删除,同样的我们还是重新创建两个物体具体来看一下。当我们选择枢轴位置为:中心的时候,我们选择这两个物体,应用组合。

这样,新对象的枢轴点就会位于这两个对象的中心位置。

当我们选择枢轴位置为:最后选择的对象,我们选择这两个物体。那么这个【最后选择的对象】就是指:这个绿色亮显的物体对象。

应用组合之后,那么这个新对象的枢轴点就会位于这个物体对象的枢轴点位置。

最后,当我们选择枢轴位置为:世界原点,我们选择这两个物体,应用组合之后
那么这个新对象的枢轴点就会位于世界坐标中心(0.0.0)的位置,非常简单。

好了,今天内容就讲到这里。

Maya中如何使用多边形布尔(Booleans)?

%e5%b8%83%e5%b0%94

今天我们来讲一下Maya多边形建模中的布尔运算命令。那么什么是布尔运算呢?布尔运算就是:并集、差集、交集的运算。那么在Maya当中,它的作用:就是通过布尔运算来修剪我们多边形来生成更加复杂的形状

我们打开网格菜单,我们可以在这个合并栏目下,看到这个布尔运算菜单。那么在这里面,就包含了并集运算、差集运算以及交集运算。

下面我们依次来看下这几个命令在默认设置下如何去使用。
首先来看下第一个Union:并集运算。并集运算就是将两个多边形对象拼合到一起,并将他们相交的部分移除。例如,我在场景中创建一个多边形立方体,然后再创建一个多边形圆柱,我们适当的调整,让它穿插到这个立方体当中。

我们先把网格关闭,假设,我们需要把这个立方体和圆柱体拼合到一起。为了便于观察,我们可以开启线框显示和半透明显示,我们选择这两个多边形,点击执行并集运算。

我们可以看到,两个物体拼合到一起的同时,中间相交的部分也会被移除。而相交边界的部分则会自动加线,将两个物体缝合成为一个新的多边形对象,这个就是布尔运算中的并集运算。

我们使用Ctrl+Z将多边形恢复原状,我们来看下第二个Difference:差集运算。
差集运算也叫相减运算,那么这里我们只要牢记:在这个差集运算模式下,被移除的部分永远是这两个物体对象的相交的部分以及【最后加选】的物体对象本身。

可能这样说还是很难理解,同样的我们还是通过实例来了解一下。例如:我们选取立方体,按住Shift键【加选】圆柱体。那么在这里,被移除的部分:就是【相交部分】,和【最后加选】的这个圆柱体本身。

我们点击执行差集运算,我们可以看到:结果和我们想的一样。他们两者之间,相交的部分被移除的同时,圆柱体本身也被移除了。

我们将多边形恢复原状,我们刚才演示的是:先选择立方体,最后加选圆柱体。

那么这次,我们反过来先选择圆柱,最后加选立方体,我们依旧来看下了,这个结论是不是也同样成立。我们可以在脑海中提前得出结论:被移除的部分:就是【相交部分】和【最后加选】的立方体本身。

我们点击执行差集运算,我们可以看到:这个运算结果和我们事先得出的结论是一样的。这个相交部分被移除的同时,立方体本身也被移除了,这个就是差集运算的使用方法。

我们将多边形恢复原状,下面我们来看下最后一个Intersection:交集运算。它的作用就是保留两个多边形相交的部分。

只要随意选择这两个多边形,然后执行交集运算,就能保留相交的部分,这个非常简单。

最后,我们一定要注意:我们在执行完布尔命令之后,为了防止以后出错。一定要记得选择对象, 按类型删除历史。

除此之外,假如我们在执行布尔命令的过程中,得到结果和我们想的不一样。那么一定要先对法线的方向做一个完整的检查。我们可以选择物体对象,打开显示菜单,在多边形下开启【面法线显示】。

这样,我们就能看到物体对象表面的法线,它和我们的面是垂直的关系。法线方向有没有问题,我们一眼就能看出来。

另外,假如我们要关闭法线显示。我们只需要重新选择物体对象,再执行一遍这个【面法线显示】命令就OK了。

好了!关于Maya的布尔运算就讲到这里。

Maya中如何利用点到点来捕捉对齐到对象(Point to Point)?

%e7%82%b9%e5%88%b0%e7%82%b9%e5%af%b9%e9%bd%90

命令位置:Maya Modify(修改菜单)→捕捉对齐对象→三种利用点到点来对齐物体对象的命令。

我们首先来看下第一个:point to point(利用点到点来对齐物体对象)

这里,我先创建一个多边形立方体作为对齐的目标对象,然后,我再创建一个球体、一个圆柱和一个圆锥。我们就用这些个模型,来演示来演示这三种对齐命令。

首先我们打开【点到点对齐】后面的这个选项设置,我们可以看到,在这里面移动类型默认的选项是:单个物体对象。

例如,现在我进入组件选择模式,我选择圆柱按住shift加选立方体,那么这里默认就进入的是点模式。

现在我选择圆柱体上的一个点按住shift加选立方体上的一个点。

接着点击应用,我们可以看到这个点被对齐的同时,这个点所属的圆柱体,也会跟着移动过去,这个就是【点到点对齐】中的移动对象模式。

然后,我们来看下后面的这个parent父子关系。

我们先将物体恢复原状,例如,现在我选择这个圆柱加选圆锥,按下P键给他们建立父子关系。

同样的,我在组件模式下,我们选择圆柱体上的一个点加选立方体上的一个点。

然后点击应用,我们可以看到,这次移动的不仅是单个圆柱对象,父子关系下的圆锥对象也同样跟着移动。

同样的,当我们我们选择圆锥上的点加选立方体上的点,点击应用的时候。

我们可以看到,父子关系下的,子对象圆柱也是会跟着移动的,这个就是parent父子关系模式,它会在点到点对齐的时候,同时让父对象和子对象也跟着移动。

我们先将物体恢复原位,然后,我们再来看下后面的这个grandparent祖父关系。这个和前面的这个parent父子关系相比,只不过多了一层关系,原理都是一样的。

我们知道,我们的圆锥是父对象,圆柱是子对象。那么,当我们我选择父对象圆锥加选球体,按下P键给他们建立父子关系之后,在这里面,球体就变成了祖父对象。

现在,当我们选择子对象圆柱上的点加选立方体上的点,点击应用的时候,我们可以看到,祖父关系下的所有对象都会跟着移动,这个就是grandparent祖父关系模式。

至于下面的这个2点到2点对齐,3点到3点对齐,他们的选项设置和第一个点到点基本都是一样的。

除了第二个2点到2点对齐,我们打开它的选项。我们可以看到它多了一个捕捉类型的选择。

例如,我选择圆柱上的2个点去对齐立方体上的2个点,我们分别来看下这三种捕捉类型的效果。

首选选择默认的左侧,点击应用,点会对齐到左侧的位置。

然后我们选择中间,点击应用,点会对齐到中间的位置。

最后我们选择右侧,点击应用,点会对齐到右侧的位置。

这就是三种捕捉类型的对齐效果,非常简单。好了,关于这个点到点捕捉对齐到对象就讲到这里。

Maya中如何枢轴点居中(Center Pivot)、更改枢轴点(Modify Pivot)、以及烘焙枢轴(Bake Pivot)?

%e6%9e%a2%e8%bd%b4%e7%82%b9%e6%8d%95%e6%8d%89

在Maya中如何枢轴点居中、更改枢轴点、以及烘焙枢轴?

首先,我们打开Modify修改菜单,我们将窗口独立显示出来。我们来看下第一个:Center Pivot – 枢轴点居中。

我们都知道,枢轴点位于位于物体对象的中心,当我们对物体对象进行某些操作时候,就会导致枢轴点像这样偏移。

这个时候,我们执行:枢轴点居中命令,就能快速将它,回归到物体对象的中心。这个就是:枢轴点居中命令。

既然讲到了这个物体对象的枢轴点,那么我们就继续来说一下,如何修改这个枢轴点。因为我们平时在旋转物体对象的时候,并不总是需要围绕中心点进行旋转。

我们可能会需要它像这样,围着某个定点做旋转运动。

或者是像这样,围绕着某条线做旋转运动。所以,熟练掌握这个修改枢轴点的方法,是非常有必要的。

下面我们分为多种情况来做讲解:
我们重新选择物体,先把它的枢轴点回归到物体对象的中心。我们先来看一下第一种,也就是最简单的:自由修改枢轴点坐标。

我们只要按住D键,就能快速进入枢轴点编辑模式。我们左键拖动枢轴点,就能快速将其修改至任意的位置,这个就是自由修改枢轴点。

我们重新选择物体,先把枢轴点回归到物体对象的中心。我们来讲下第二种:将枢轴点捕捉对齐到组件,组件也就是指物体对象的点、线、面。

例如现在,我们要把物体对象的枢轴点,捕捉对齐到自身的点线面上。我们先按住D键,我们尝试将鼠标移动点线面上,我们会发现鼠标所指的组件都会变成红色。其实就是提示我们,已经捕捉到了目标对象,鼠标下方的align代表的就是对齐的意思。

例如我们将鼠标移动到点上,左键单击红点,枢轴点就会自动捕捉对齐到点上。

我们将鼠标移动到线上,左键单击红线,枢轴点就会自动捕捉对齐到线上。

同样的,我们移动到面上,左键单击面,枢轴点就会自动捕捉对齐到面上。这个就是将枢轴点捕捉对齐到组件。

我们重新选择物体,先把枢轴点回归到物体对象的中心。我们来看下第三种:将枢轴方向捕捉到选定组件(点线面)。

方法和上面的类似,只不过这次我们改变的只是枢轴的方向,不改变它的位移。这里,我们按住D键+Ctrl键,鼠标下方这次出现的是orient,代表的是确定方向(朝向)的意思。

我们单击对应的点,我们可以看到:它的枢轴方向就会重新确定为:这个顶点的方向。

同样的,我们单击线和面,它的这个枢轴也会重新确定为新的方向。

这个就是将枢轴方向捕捉到选定组件。同样的,我们重新选择物体,先把枢轴点回归到物体对象的中心。我们来看下第四种:将枢轴点捕捉到组件(点线面)。

我们按住D键+Shift键,鼠标下方这次出现的是pos,它是position位置的缩写。

同样的,基本的操作就是单击对应的点、单击对应的线,以及单击对应的面,就能很容易的将枢轴点捕捉到组件。

另外,我们观察可以发现,和上面不同的是:这个捕捉操作并不会改变枢轴的方向。

另外,我们双击打开移动选项设置,我们可以看到,当前使用的枢轴方向是:World世界坐标。

当我们再次进行自定义枢轴操作的时候,这个枢轴方向就会变为:Custom自定义。

其次我们点击这个Reset,就能重置:枢轴的位置和方向。

至于这个Edit pivot编辑枢轴按钮,它和我们的快捷键D是相对应的。我们按下D键的时候,它就会变为激活选定状态,放开D键的时候,就会自动取消选定,这个很简单。

好了,我们把这个设置窗口关闭,我们来讲一下烘焙枢轴命令。其实很多人不明白这个烘焙是什么意思,其实它的作用就是重新计算自定义枢轴点的位置和方向,并将它最终应用到各自的物体对象上。

以我们当前的这个模型为例,我们将其移动一个位置,我们可以看到当前模型的位移参数,实质上也就是枢轴坐标的参数。

但是,当我们尝试对枢轴点,修改到另一个位置的时候,我们会发现,这个枢轴点的位移并没有发生变化。

其次,我们将这个枢轴点吸附到网格中心的时候,我们也会意外的发现,它的位移XYZ的数值居然不是0,这就更加的奇怪了。

潜在的意思就是:这个修改后的枢轴点还没有生效获取到它真实的世界坐标。这就需要使用到这个烘培枢轴命令。让其重新计算枢轴点的位置和方向,从而应用到这个对应的物体对象上。

我们现在注意观察这个枢轴点的位移参数,我们点击执行烘培枢轴命令,我们可以看到当前枢轴的位移XYZ已经变为0,代表我们枢轴点已经被重新计算,并且应用到了我们的物体对象上,这个就是烘培枢轴的作用。

另外我们点击烘培枢轴后面的这个小方框打开选项,那么在这里面默认烘培的是:枢轴点的位置和方向。

当然,我们也可以单独的选择位置或者方向,这个我们按照实际情况来选择就可以了。

好了,关于枢轴点居中、更改枢轴点、以及烘焙枢轴就讲到这里。

Maya中如何使用重置变换和冻结变换命令(Reset & Freeze Transformations)?

%e9%87%8d%e7%bd%ae%e5%86%bb%e7%bb%93%e5%8f%98%e6%8d%a2

Maya修改菜单下的【重置变换】和【冻结变换】。为什么放到一起讲呢?是因为他们都属于变换操作,并且存在一些操作上的联系。

废话不多说,我们来看下第一个:Reset Transformations重置变换。

我们在场景中创建一个圆柱体来做演示一下。首先我们知道,重置变换就是恢复默认值(零位置)的意思。具体重置的内容,我们点击它后面的这个小方框打开选项设置,这里,默认重置的选项为:平移、旋转、缩放。

我们可以看到,我们当前圆柱体的默认值,平移旋转都为0,缩放比例为1。

那么我们现在尝试对物体进行平移,然后将其旋转任意的角度,最后我们将其任意的缩放。

现在我们在通道盒中,我们可以看到,它的移动旋转缩放的值都发生了变化。

那么现在我们想要这个物体回到它创建时候的位置,也就是世界坐标的中心。传统的做法是:我们只需要将它的平移XYZ都设置为先前的0。物体就会自动回到世界坐标中心。

同样的,我们想要恢复旋转和缩放,我们只需要将旋转设置先前的0,将缩放设置为先前的1,我们可以看到,我们的物体对象又恢复到了创建时候的默认状态。
这样,就相当于我们对物体对象进行了一次手动的重置变换。

而现在,我们需要的是一次性到位,就需要用到这个重置变换命令。我们使用Ctrl+Z,把它恢复到我们手动重置变换之前的位置。这个时候,我们只要点击重置变换,物体就会回到创建时候的位置和状态,就不需要我们一个一个去手动重置参数,这个就是重置变换的作用。

然后我们再来讲一下这个Freeze Transformations冻结变换,那么这个冻结变换它的作用是用来设置物体的零位置。

同样的,我们点击它后面的这个小方框,打开选项设置,我们可以看到默认冻结变换的内容为:移动旋转缩放,同时还可以选择冻结关节方向。

上面我们讲到了物体创建时候的位置就是零位置。不管我们怎么去平移、旋转、缩放,它的零位置永远只会是世界坐标的中心。而假如我们要改变这个物体的零位置,重新给物体对象设置零位置,就必须要用到这个冻结变换。

例如,现在我把这个圆柱体移动到一个我想让它呆的位置,并将它旋转一个角度、缩放到一个我认为比较满意的大小。

假设现在,我就把当前物体的这个状态设置为零位置。我们只需要点击冻结变换,物体的零位置就会重置为当前的状态,并且强制将物体对象的平移、旋转重置为0,缩放重置为1。

现在,当我们再次对物体进行平移、旋转、缩放之后,我们再次点击重置变换。物体对象回到的就是我们新冻结变换之后的这个零位置,而不再是世界坐标的中心位置,这个就是冻结变换的作用。

好了,关于Maya的重置变换和冻结变换就讲到这里。

Maya脚本:Maya工具架 – 快速向工具架添加快捷命令

%e5%b7%a5%e5%85%b7%e6%9e%b6%e6%b7%bb%e5%8a%a0%e5%91%bd%e4%bb%a4

Maya的工具架主要包含的是一些Maya的常用命令。每个选项卡菜单下,又包含了常用的快捷命令,并且,它是以最直观的图标形式来显示的。我们只要点击对应的图标,就能快速执行对应的命令。

工具架

例如,我们现在要创建一个多边形球体。我们需要依次打开创建菜单>选择多边形>选择球体。

菜单创建多边形

但是有了工具架,我们可以直接点击多边形选项卡下的球体图标,就可以快速创建出一个多边形球体。

多边形创建快捷图标

现在我们从左往右,依次来介绍一下这些选项卡菜单:
第一个是曲线/曲面,二是多边形建模,三是雕刻,四是装备,五是动画,六是渲染,七是FX特效,八是FX特效缓存,九是自定义模块,十一是阿诺德渲染器,十二是流体特效,十三是节点控制器插件,十四是运动图形,十五这个是毛发插件。

选项卡菜单

正常的情况下,我们切换菜单只需要点击对应的选项卡就可以。同时我们还可以在工具架的左侧,点击两条横线样式的导航按钮,打开单选,列表菜单。在这里面,我们同样可以快速选择切换选项卡菜单,这和我们手动点击切换选项卡是一样的。

导航列表菜单

然后我们再来看一下下面的这个编辑选项。
第一项是:工具架选项卡
我们取消或者勾选,可以决定是否显示选项卡。

工具架选项卡

第二项是:工具架编辑器
在这里面,我们可以对选项卡菜单或者是常用命令。
进行排序、添加或者删除操作。

工具架编辑器

第三项是:导航工具架
我们将这个小窗口独立出来,分别是上一工具架、下一工具架,跳转到工具架。这个就有点像我们翻书时候的操作上一页,下一页,跳转到指定页,是一样的道理。这个同样和我们手动点击切换一样的,只不过这里是用命令的方式来执行的。

导航工具架

至于这个跳转到工具架,例如我现在要跳转到FX选项卡,只需要输入“FX”,点击OK,就能快速跳转到FX选项卡下。

第四项是:新建工具架
我们可以点击创建一个自定义工具架,输入名称,点击创建,我们可以看到创建好的工具架。

新建工具架

第五项是:删除工具架
比如我们要把刚才创建的这个工具架删除
我们只需要点击,选择切换到这个工具架
然后在这里点击删除工具架就可以了

删除工具架

第六项是:加载工具架
点击打开,我们可以选择导入mel格式的脚本命令文件

加载工具架

最后这项是:保存所有工具架
这个没有什么可说的

保存所有工具架

最后,我们重点说一下
如何将向工具架添加菜单项命令?
比如我们最常用到Modify修改菜单下的居中枢轴命令。我们想把它放到我们Custom自定义的选项卡菜单下。

居中枢轴

我们只需要键盘上按下Ctrl + Shift然后鼠标左键单击这个菜单项,这个菜单项命令就会自动添加到自定义选项卡菜单下。

添加居中枢轴命令


下次我们要用到这个命令,只需要选择物体,点击它就可以快速居中枢轴。
如果我们要移除它,只需要在图标上右键选择Delete删除就可以了。

删除命令