Maya中如何使用材质编辑器(Hypershade)?

feature_%e6%9d%90%e8%b4%a8%e7%bc%96%e8%be%91%e5%99%a8

今天我们来讲一下Maya当中的材质编辑器(Hypershade)的基础使用方法。那么我们除了可以直接点击这个蓝色的小圈打开材质编辑器。

我们还可以在窗口菜单,渲染编辑器中打开材质编辑器。

那么在这个材质编辑器窗口中,默认是分为五个部分:第一个是浏览器窗口,在这里面我们浏览材质纹理等等;第二个是创建窗口,在这里面我们可以快速创建材质,纹理,灯光等等;第三个是工作窗口,在这里面我们可以对材质进行复杂的编辑操作;第四个是材质预览窗口,在这里面呢我们可以实时显示当前材质的渲染效果;第五个是属性编辑器,在这里面我们可以对材质做进一步的调节。

那么在这些窗口和窗口之间的占用区域,我们可以手动对它们进行分配。

其次,如果我们不小心把哪个窗口关闭了,我们可以在窗口菜单下重新打开对应的窗口。

然后拖动窗口就可以选择停靠位置。

那么通常我们在使用这个材质编辑器的时候,我们希望在这个材质编辑器窗口中,同时看到场景中的内容或者是UV编辑器等等。我们就可以在窗口菜单下选择“viewport”

然后我们选择一个位置停靠。

然后我们再在窗口菜单下,选择UV编辑器

那么这里,如果我们单独放置它,位置就有点不够用了。这个时候,我们就可以合并到这个“viewport”窗口中,这样的话,我们在使用的时候,只要切换下方的选项卡就OK了。

然后我们来看一下这个“材质预览窗口”,这里我们先随便创建一个Maya当中的Blinn材质球。

那么这里,我们可以选择硬件或者Arnold渲染。

预览模型,我们可以设置为多种模型。

还有这个预览的环境图,我们也可以对它进行更改。

那么因为这个Arnold预览需要更多的时间,所以这里我们还是切换为“硬件渲染”。至于这个视图查看和我们在场景中操作是一样的,这里就不多说了。

然后我们来看下工作窗口,那么当我们想同时处理多个材质的时候。我们就可以点击这个“+”号来增加工作窗口,这样的好处就是方便我们对不同材质进行管理。

那么至于这个创建窗口里的节点,我们最熟悉的就是表面中的材质节点和File文件节点。因为有了这两个节点呢,我们就可以快速的给模型进行一个基础贴图。

那么之前,为了方便,我们直接在这个颜色属性上链接了一个Flie文件节点

但是这里,我们不这么做,我们换一种方式,我们单独的创建的一个File文件节点。

我们选择它,给它链接一个图像。

那么既然我们要把图像颜色传递给材质球。所以这里呢,我们就可以把文件节点中的输出颜色,连接到材质球的颜色属性上。

这样呢,我们的这个材质的表面,就发生变化了。

另外,我们假设我们要给这个材质添加一个渐变透明的效果。我们可以在2D纹理属性中找到这个Ramp渐变节点。

那么这里,虽然我们可以直接点击创建,但是我们不这么做。这里我们使用另外一种创建方法,我们在工作区,按Tab键,输入Ramp。这样呢,下面就会出现一个渐变纹理供我们选择,非常简单。

那么这种创建方法呢,只要我们对各种材质或者节点名称熟悉,操作起来,是非常方便的。再比如,我们要创建一个Arnold当中的标准表面着色器我们就可以按Tab键,输入“aistandardsurface”。这样呢,我们就可以快速的将这个材质创建出来,非常简单。

我们继续回到这个渐变节点中,那么这个渐变节点,默认是黑色到白色的一个过渡。而当它们表示透明度的时候,黑色就表示完全透明,白色就是不透明。这个判定规则呢,非常重要,我们一定要牢记。

现在我们就可以把渐变节点中的输出颜色,连接到材质球的透明度属性上

这样,我们只要控制这个渐变的范围就可以控制材质的透明属性。

当然,我们在实际操作的过程中,不可能这样,简单的几个节点就搞定了。具体情况还得具体分析,但是基础操作一定要掌握。

那么我们的这个材质弄好之后呢,我们就可以把这个新材质指定到模型上。我们选择模型,我们在材质上右键选择“指定材质到选择对象”。

这样,这个材质赋予就完成了。

那么最后,还有一个问题:就是我们如何修改材质或者节点的问题?那么我们重新打开材质编辑器的时候,是这样一个空白的工作区。

我们只要选择需要修改的材质,然后点击这个“输入和输出连接”,就可以重新展开与材质关联的节点,非常简单。

本节要点:
快速创建材质接单方法:
按Tab键,输入材质或者节点名称。
赋予材质:
选择对象,在材质上右键选择“指定材质到选择对象”。
Ramp渐变节点表示透明度的时候:
黑色就表示完全透明,白色就是不透明。

Maya中如何使用平滑变形器(Delta Mush deformer)?

feature_%e5%b9%b3%e6%bb%91%e5%8f%98%e5%bd%a2%e5%99%a8

Maya装备模块→变形菜单→平滑变形器(Delta Mush deformer)。

那么关于这个功能的中文解释非常少。我只要知道它的作用:就是用来对物体对象做一个平滑变形。那么它和我们多边形中的平滑处理是有很大区别的“平滑处理呢,针对的是多边形的建模环节,而我们的这个平滑变形,则是属于变形效果”。

现在我们就来认识一下这个平滑变形器那么我们在场景中准备了一个腿部的模型。这里我们准备通过简易的绑定蒙皮的方式让她的腿部弯曲。我们进入到右视图当中,然后,我们在这个装备模块骨架菜单下,打开创建关节选项设置。

我们重置一下默认值,勾选【确定关节方向为世界方向】。

我们4键开启线框显示,我们从上往下放置关节,那么这个脚掌关节用不到,我们不用去管它,我们回车键确认。

然后我们进入到前视图当中对齐一下骨骼位置。

接着我们回到透视图当中,我们打开骨架菜单,选择创建IK手柄。

这个时候,我们只要单击根关节,再单击末尾的关节。

这样,这个IK控制手柄就创建完成了。

现在我们就把这个骨骼绑定到我们的这个腿部,我们选择根关节加选模型,然后在蒙皮菜单下,打开绑定蒙皮选项设置,这里我们我们把绑定方式更改为【热量贴图】,然后点击绑定。

好了,绑定完成后,我们选择这个IK手柄,我们移动来看一下绑定是否成功。那么这个绑定是生效了,但是呢,我们可以看到这个弯曲的折叠部分呢,有点变形过度了。这个时候,我们就可以使用平滑变形来进行处理。

为了对比,我们先把当前的这个效果截图保存。

然后我们让腿部恢复原状,我们选择腿部在变形菜单下,执行平滑变形。

然后我们再次选择IK手柄,我们向上移动和前面差不多相同的距离。那么现在,这个对比效果就出来了。我们可以看到:这个施加了平滑变形的腿部模型,它的弯曲部分看起来要比这个直接弯曲的效果更加的自然平滑。

那么至于更加细节的调整,我们可以选择腿部,然后在右侧展开它的平滑变形节点,这里我们修改封套值,一样可以很直观的看到变形前后的效果。

然后比较重要的就是这个平滑迭代,那么说白了就是平滑效果重复的次数。重复的次数越多,平滑的效果自然就越好。

然后下面的属性,分别为平滑步长,向内约束和向外约束,还有这个权重距离,我们都可以根据实际情况来进行调节

那么关于这个平滑变形,主要就是这些内容。而我们特别需要注意的是在这种绑定了蒙皮的模型上,我们在执行平滑变形之前一定要保证这个模型是在绑定蒙皮时候的状态。就像我们的人物模型,默认是在T字型下进行绑定的。所以以后,我们在对人物进行平滑变形的时候,一定要记得在T字型的状态下执行平滑变形。

注意:在绑定了蒙皮的模型上执行平滑变形的时候,要保证模型处于绑定时的原始状态,例如人体T字型。

Maya中如何分离曲面(Detach Surfaces)?

%e5%88%86%e7%a6%bb%e6%9b%b2%e9%9d%a2

本次讲解:Maya曲面菜单中的分离曲面(Detach Surfaces)。它的作用就是将一个完整曲面拆分为多个面片。

那么分离曲面和我们多边形中的提取面的结果是比较相似的。那么接下来我们会通过分离曲面来制作一个简单的动画效果。例如我们在场景中创建一个曲面球体,那么为了观察效果,我们先给我它赋予一个phong材质,然后我们给它调节一个自己喜欢的颜色。

接着我们在凹凸贴图节点上链接一个2D分形纹理。

那么这个表面太粗糙了,我们可以适当的减少一些这个振幅数值

这样我们的这个球体看上去就好多了。

我们先把这个曲面菜单独立显示出来,那么现在我们就开始分离曲面。那么我们要做的就是把这个球体从大概中间部分一分为二,然后我们再把上半部分分离成多个面片。操作呢非常简单,我们只要右键进入等位线模式,然后选择中间部分的等位线。

当然我们也可以在选择等位线之后,左键拖动,形成一条我们自己定义的分离参考线。

接着我们只要执行分离命令,这个球体表面就被我们切成两半了。

然后我们再次选择这条等位线,将上半部分一分为二。

接着我们再把这个曲面分离成多个面片。

同样的,我们可以直接选择它原先的等位线,也可以拖动形成我们自己定义的分离参考线。那么这里我们直接使用现成的等位线。选择完成之后,我们直接执行分离。

这样,我们的面片就被分离开了。

同样的上面这个曲面也是一样的分离方法。

那么分离完成之后,我们就可以来制作一个旋涡状面片向外飘飞的一个动画。这里我们选择上半部分分离出来的这些面片。

然后我们切换到FX特效模块,这里我们在力场/解算器菜单下,给它们统一施加一个漩涡场。

那么我们4键线框显示就可以看到这个力场的位置。

接着我们把这个动画设置为1000帧的时长,然后检查一下, 我们让它回到初始的第一帧。我们播放来看一下,我们可以看到这个效果是出来了。

但是因为我们的漩涡场是恒定的,导致后面乱飞停不下来。

这就需要我们通过设置关键帧的方式让场强逐渐的消失,所以这里我们选择这个漩涡场,Ctrl+A打开属性设置,然后我们找到这个场强属性,那么它默认的是5。

假设我们要在20帧的时候开始衰减,我们就跳转到20帧,在场强属性上右键设置关键帧。

那么假设我们要在40帧的时候,场强衰减为0,我们就跳转到40帧,场强设置为0,并且设置关键帧。

好了,调整完成之后,我们回到第一帧,我们再次播放看一下,那么这次的效果看起来就好的多了。

另外如果我们觉得这个面片太重了或者是太轻了。我们可以选择他们,打开通道盒,找到这个刚体节点属性。

我们可以找到这个质量参数,们适当的调整质量大小就OK了。

【重点总结】→操作方法:进入等位线模式,可以直接选择等位线,也可以左键拖动等位线来确定分离位置,最后执行分离曲面。

动画环节:场强默认是恒定的,设置关键帧的时候,一定要跳转到指定帧,对场强进行K帧。

Maya中UV坐标和贴图的关系?

uv%e5%9d%90%e6%a0%87%e5%92%8c%e8%b4%b4%e5%9b%be

今天我们来认识一下在Maya多边形建模中的UV坐标和贴图。那么我们都知道:我们平时在场景中使用的就是这个【XYZ空间坐标】。这个【空间坐标】决定了【物体对象】在场景中的位置

而这个【UV坐标】则是决定【贴图】在【物体表面】的位置。

那么这个U代表的是水平,V代表的就是垂直。

例如,我们在场景中创建一个多边形立方体,我们使用Ctrl+A打开属性编辑器,我们找到它所对应的Lambert材质球。

为了清楚的观察到UV变化,我们在Color颜色属性上链接一个棋盘格,那么这个棋盘格就相当于是一个简单的贴图。

然后我们在UV菜单下,打开UV编辑器。

我们选择立方体,那么我们首先看到的就是这个白色线框显示的图形。那么很显然这个图形就是我们这个立方体展开之后的平面图。

那么因为这个立方体是非常简单的几何体,所以软件会自动帮我们展UV。但是像一些比较复杂的模型,还是需要我们借助其他的一些插件来分割UV。

那么除了这个UV平面图,我们看到的这个蓝色的刻度标尺,就是我们的UV坐标。

而我们拆分的UV也都是处于这个第一个象限内。

而这个UV比例大小,在没有特殊需求的情况下都是小于1的,也就是在我们的这个正方形范围之内。

那么现在我们把这个棋盘格贴图显示出来。

我们可以看到,这个UV平面恰好就是处于【棋盘格的范围之内】。

我们右键进入UV点模式,我们选择所有的UV点。

然后我们整体移动它,我们可以看到:我们移动UV位置之后,这个模型上的贴图也会跟着变化。

我们移动单个UV点我们可以看到:这个UV点对应的模型上的点周围的图像也会跟着变化。

说的直接明白一点就是无论我们如何去操作这个UV平面,我们的这个UV平面所截取到的这个图案,最终都会反馈映射到我们的这个立方体的表面上。这个就是UV坐标和贴图的关系,它能够决定【贴图】在【物体表面】的位置。

当然,如果我们觉得这个棋盘格还是不够直观,我们可以在它的颜色属性上重新链接一个自己喜欢的贴图,我们可以在标签上右键选择断开链接。

然后我们重新链接一个File文件节点。

我们在这个图像名称编辑框后面,点击这个文件按钮,就可以导入自己喜欢的贴图,非常简单。

好了,关于UV坐标和贴图的关系就讲到这里。

Maya中如何显示法线和反转法线(Face Normal+Reverse)?

%e5%8f%8d%e8%bd%ac%e6%b3%95%e7%ba%bf

今天我们来了解一下在Maya多边形建模中如何显示法线和反转法线(Face Normal+Reverse)?那么在Maya当中,法线的作用就是决定了面的方向。要显示物体表面的法线也很简单,我们只要选择模型,在显示菜单,多边形选项下,选择面法线显示就可以了。

我们可以看到:模型上面和法线都是一一对应的,并且和我们的面是垂直的关系。

我们进入面模式,把模型上的一部分面删除。我们可以看到,这个模型内部的面漆黑一片,这是因为内部的面处于面法线相反的方向。同理,我们逆向思考,我们可以通过黑面来确定法线的方向是不是有问题。

我们把另外一个法线有问题的模型显示出来,我们按下6键开启纹理贴图显示。我们可以看到:这个模型上有一个很明显的黑面是没有贴图的。

同样的,我们选择这个模型,先给它开启面法线显示。我们可以看到这些个黑面上的法线方向是朝向内侧的。

想要修复这个黑面的问题,我们需要进入面模式,按住Shift键选择这几个法线有问题的黑面,在网格显示菜单下执行【反转法线】命令。

这样这几个面的法线就被【反转】过来面上的贴图也就正常了。

现在我们打开【反转法线】的选项设置,在这里有一个反转法线的模式:总共有三种反转模式:第一种,也就是我们刚才默认执行的:对选择的面执行反转法线。

而第二种则是在第一种反转面的基础上,同时把面提取出来。

我们撤销回去,同样的我们选择这几个面,应用反转。

我们按下W键移动,这个面会直接从模型上分离出来,这个就是反转并提取面模式,我们撤销回去。

然后,我们再来看下第三种:反转在壳上的所有面。这个壳指的就是我们这个模型上的所有表面。

那么这里,由于反转的是模型上的所有面,所以我们只要选定这个模型上的任意面或者是框选整个模型上的所有面,这个操作的目的只有一个:就是确定目标对象。

然后我们点击执行反转,这样原先向外的面,就会翻转到内侧;原先向内的面,就会翻转到外侧,这个就是反转在壳上的所有面。

那么下面的这个是用户法线选项:一个是保持用户法线方向,一个是反转用户法线,这里保持它默认的【反转用户法线】就OK了。

好了,关于显示法线和反转法线就讲到这里。

Maya中如何使用三角形化(Triangulate)和四边形化(Quadrangulate)?

%e4%b8%89%e8%a7%92%e5%8c%96%e5%9b%9b%e8%be%b9%e5%bd%a2%e5%8c%96

今天我们来看下MAYA多边形建模中的三角形化和四边形化。同样的,我们在Mesh网格菜单下,就可以找到这个Triangulate:三角形化;Quadrangulate:四边形化

我们首先来看下这个:三角化命令。

例如我们在场景中创建一个多边形立方体,我们适当的给它增加一些细分段数。我们只要选择它,点击执行【三角化】命令,那么这个多边形立方体上的面,就会转化为三角面。

那么这里我们需要注意是,有的教程它会告诉你:这个命令是四边面转化为三角面,其实这个说法是不完全正确的。因为【三角化】命令,针对的是多边形上的面,跟你这个面本身有几条线是没有任何关系的。

我们撤销回去,我们以这个四边面为例。假设我们在这个四边面上加两条线,那么这个网格就变为一个五边面。

我们回到对象模式,我们再次执行【三角化】命令,我们可以看到:这个五边面也同样会被转化为三角面。

当然我们平时建模的时候,会尽量使用四边面减少使用三角面,而之所以不使用4条边以上的面,一方面是因为计算容易出错,另一方面是因为这种布线不是那么的美观。

然后我们再来看下这个:四边形化,它的作用就是:就是将多边形上的三角面转化为四边面。我们撤销回去,同样的我们以这个模型为例。我们先对其执行【三角化】,那么现在它就是一个三角面组成的模型,当我们再对其执行【四边形化】,那么它上面的三角面,就会全部变为四边面。

这个很简单,我们接着来看下【四边形化】的选项设置,那么这里有一个【角度阈值】,它默认的是30度。

这个阈值:是控制相邻的两个三角面合并的极限参数。而这个度数:指的是他们两者【面法线】所成的夹角。以这个默认的30度来说,它的意思就是:只要相邻的两个三角面的法线夹角在30度的阈值范围内,那么这两个相邻的三角面,就会合并为一个四边面。可能我这样说,还是很难理解,同样的我们以这个模型为例,我们撤销回到它三角面的形态,我们具体的来分析一下:它的原理是怎么样的。

既然是和【面法线】有关系,我们在Display显示菜单下,在多边形扩展菜单下,开启【面法线显示】。

那么这个绿色就是法线,我们可以看到每个三角面上都有一条法线,并且这个法线和我们的面是垂直的关系。

以这两个相邻的三角面为例,我们一看知道:它们是处于一个平面上的。所以面法线的夹角就为0度,而0度<30度,在角度阈值范围之内,所以这两个三角面,才被合并为一个四边面。

那么这里我们讲到的是:共面的两个三角面。现在我们进入面模式,我们适当的调节面的角度,让这两个三角面不在一个平面上。

那么现在我们可以看到:这两个面法线夹的角差不多也就是20度左右。假设我们把角度阈值设置为10,因为20度不在10度的阈值范围内。

所以,在执行【四边形化】命令的时候,这个两个三角面是不会被四边化的。

同时受影响的旁边这两个三角面,也同样不会被四边化。

我们撤销回去,假设我们再把阈值设置50,因为20度的法线夹角,刚好在50度的阈值范围之内。

所以,当我们再次执行【四边形化】命令的时候,这两个三角面就会被四边化。

这样一说,角度阈值应该就很好理解了。这里我们只要记住:法线夹角在阈值范围内,才会被四边形化,否则将保持原先的三角面。

至于下面的保持面组边界,保持硬边,保持纹理边界,世界空间坐标

这些都是附加勾选的一些功能属性:
保持面组边界(Keep face group border) :决定是否可以修改面集的边界。
保持硬边(Keep hard edges) :决定是否可以删除两个三角形之间的硬边。
保持纹理边界(Keep texture border) :决定是否可以修改纹理贴图的边界。
世界空间坐标(World space coordinates) :启用为默认的【世界空间】内的法线夹角,禁用为【局部空间】内的法线夹角。

好了,关于多边形的三角形化和四边形化命令就讲到这里!